Table 3. Observed values for the ring torsion angles $\left(^{\circ}\right)$ compared with the calculated values of Geise, Altona \& Romers (1967) for rings A and C, and with the average for a selection of other steroids (Duax \& Norton, 1975) for rings B and D

	Observed		ated
Ring A			
10-1-2-3	-57.7 (4)	-57	
1-2-3-4	53.1 (4)	55	
2-3-4-5	-49.6 (4)	-56	
3-4-5-10	50.7 (3)	58	
1-10-5-4	-49.9 (4)	-58	
5-10-1-2	53.2 (4)	58	
Ring C		With D	Without D
13-12-11-9	-56.0 (4)	-56	-56
12-11-9-8	51.1 (4)	57.3	56
11-9-8-14	-49.7 (3)	-58	-58
9-8-14-13	57.4 (3)	58	58
8-14-13-12	-60.9 (3)	-58	-59
14-13-12-11	57.4 (3)	58	58
Ring B			
6-5-10-9	15.4 (5)		
10-5-6-7	1.2 (5)		
5-6-7-8	12.8 (5)		
6-7-8-9	-42.6 (4)		
7-8-9-10	60.7 (3)		
8-9-10-5	-45.9 (3)		
Ring D			
17-13-14-15	$45 \cdot 2$ (3)	47.7	
13-14-15-16	-34.6 (3)	-38.2	
14-15-16-17	9.7 (3)	13.4	
15-16-17-13	18.2 (3)	$16 \cdot 2$	
16-17-13-14	-38.1 (3)	-38.3	

support and Mr B. Ramakrishnan for his valuable suggestions.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Bhutani, K. K., Ali, M., Sharma, S. R., Vaid, R. M. \& Gupta, D. K. (1988). Phytochemistry, 27, 925-928.

Duax, W. L. \& Norton, D. A. (1975). Editors. Atlas of Stereoid Structure, Vol. 1. New York: IFI/Plenum.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Geise, H. J., Altona, C. \& Romers, C. (1967). Tetrahedron, 23, 439-463.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
North, A. C. T., Phillips, D. C. \& Mathews, F. D. (1968). Acta Cryst. A24, 351-359.
Radhakrishnan, R., Viswamitra, M. A., Bhutani, K. K. \& Ali, M. (1988). Acta Cryst. C44, 518-521, 1462-1464.

Sutton, L. E. (1965). Editor. Tables of Interatomic Distances and Configuration in Molecules and Ions. Spec. Publ. No. 18. London: The Chemical Society.

Acta Cryst. (1988). C44, 1823-1825

Structure of an Analogue of the Triazolobenzodiazepine Alprazolam*

By Helen J. Kemmish and Thomas A. Hamor
Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 18 April 1988; accepted 8 June 1988)

Abstract

Methyl-6-phenyl-8-(trifluoromethyl)-4H-s-triazolo[4,3-a][1,4]benzodiazepine sesquihydrate, $\mathrm{C}_{18^{-}}$ $\mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4} \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=369 \cdot 3$, monoclinic, $C 2 / c$, a $=13.115$ (4),$\quad b=9.673$ (3), $\quad c=27.007$ (7) $\AA, \quad \beta=$ 96.79 (3) ${ }^{\circ}, V=3402.1 \AA^{3}, Z=8, D_{x}=1.442 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=1.16 \mathrm{~cm}^{-1}, \quad F(000)=$ $1528, T=294 \mathrm{~K}, R=0.049$ for 1544 observed reflections. The seven-membered ring is in a cyclohepta-triene-like boat conformation with bow and stern angles of 55.5 (8) and $36.2(8)^{\circ}$, respectively. The angle between the 6 -phenyl ring and the fused benzo moiety is $63.5(8)^{\circ}$. The triazolo ring and the two aromatic rings are each planar to within the limits of experimental error.

^[* Contribution from the Crystallography Unit, Universities of Aston and Birmingham.]

0108-2701/88/101823-03\$03.00

Introduction. The title compound (Hester, Rudzik \& Kamdar, 1971) belongs to the class of triazolobenzodiazepines, exemplified by alprazolam \dagger and triazolam, \ddagger which have found use in clinical practice as anxiolytics and hypnotics. It differs from alprazolam only in that the substituent at C 8 is a trifluoromethyl group, rather than a chlorine atom. However, its affinity for the benzodiazepine receptor in vitro is about 12 times less strong.

Experimental. Crystals were grown from amyl acetate. A crystal of size $0.15 \times 0.4 \times 0.4 \mathrm{~mm}$ was mounted on

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ for the heavier atoms with e.s.d.'s in parentheses, and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	$U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{23}+2 U_{13} \cos \beta\right)$			
	x	y	z	$U_{\text {eq }}$
	x	y	$z(3)$	$-2805(3)$
$\mathrm{F}(1)$	$10897(2)$	106		
$\mathrm{~F}(2)$	$-1079(3)$	$-1993(5)$	$3517(1)$	121
$\mathrm{~F}(3)$	$-838(2)$	$-1234(3)$	$2815(1)$	73
$\mathrm{~N}(1)$	$2432(2)$	$2223(4)$	$4231(1)$	39
$\mathrm{~N}(2)$	$3698(3)$	$3195(5)$	$4698(1)$	62
$\mathrm{~N}(3)$	$2978(3)$	$4215(5)$	$4547(1)$	62
$\mathrm{~N}(5)$	$1401(3)$	$4131(4)$	$3452(1)$	45
$\mathrm{C}(1)$	$3361(3)$	$2024(5)$	$4504(1)$	47
$\mathrm{C}(3)$	$2233(3)$	$3603(5)$	$4269(1)$	46
$\mathrm{C}(4)$	$1310(4)$	$4197(6)$	$3989(2)$	52
$\mathrm{C}(6)$	$1382(3)$	$2948(4)$	$3243(1)$	34
$\mathrm{C}(7)$	$547(3)$	$625(4)$	$3273(1)$	38
$\mathrm{C}(8)$	$382(3)$	$-611(5)$	$3494(1)$	40
$\mathrm{C}(9)$	$886(3)$	$-923(5)$	$3956(2)$	48
$\mathrm{C}(10)$	$1568(3)$	$-4(5)$	$4198(2)$	46
$\mathrm{C}(11)$	$1743(3)$	$1256(4)$	$3972(1)$	36
$\mathrm{C}(12)$	$1238(3)$	$1604(4)$	$3502(1)$	34
$\mathrm{C}(13)$	$3926(5)$	$706(7)$	$4556(2)$	66
$\mathrm{C}(14)$	$-357(4)$	$-1658(5)$	$3245(2)$	55
$\mathrm{C}\left(1^{\prime}\right)$	$1504(3)$	$2893(4)$	$2704(1)$	33
$\mathrm{C}\left(2^{\prime}\right)$	$1943(3)$	$1773(5)$	$2494(2)$	42
$\mathrm{C}\left(3^{\prime}\right)$	$2080(4)$	$1767(5)$	$1995(2)$	54
$\mathrm{C}\left(4^{\prime}\right)$	$1777(4)$	$2896(6)$	$1701(2)$	56
$\mathrm{C}\left(5^{\prime}\right)$	$1353(4)$	$4013(5)$	$1907(2)$	53
$\mathrm{C}\left(6^{\prime}\right)$	$1221(3)$	$4034(5)$	$2402(2)$	43
$\mathrm{O}(1)$	$743(5)$	$1889(6)$	$323(2)$	136
$\mathrm{O}(2)$	$2048(14)$	$2974(13)$	$-188(6)$	213^{*}
	$*$ Disordered water oxygen; s.o.f. 0.5.			

an Enraf-Nonius CAD-4 diffractometer. Lattice parameters from 25 reflections having $11<\theta<20^{\circ}$. Data collected using $\omega-2 \theta$ scans, $2<\theta<25^{\circ}$; two standard reflections measured every 2 h showed no significant variation over period of data collection; 3121 reflections scanned, 2983 unique, $R_{\text {int }}=0.022$; of these 1544 having $I>2.5 \sigma(I)$ were used in the analysis, index range $h-14$ to $15, k 0$ to $11, l 0$ to 31 ; no absorption corrections applied; structure solved by direct methods; non-H atoms refined with anisotropic temperature factors, H atoms refined isotropically; full-matrix least-squares refinement on F magnitudes. $R=0.049, \quad w R=0.065, \quad w=1 /\left[\sigma^{2}(F)+0.001 F^{2}\right]$, $\max . \Delta / \sigma<0.1$; residual electron density in final difference Fourier map within $\pm 0.3 \mathrm{e} \AA^{-3}$; atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). Computations were carried out with SHELX (Sheldrick, 1978) on the University of Birmingham Honeywell computer.

In agreement with analytical data (Hester, Rudzik \& Kamdar, 1971) a molecule of water of hydration was found to be present. In addition, a fairly large peak in the difference map, near a centre of symmetry, was interpreted as a disordered water molecule which could occupy one of the two symmetry-related positions. It was included in the calculations with site-occupation factor of 0.5 . The H atoms of this disordered water molecule were not located.

Table 2. Molecular dimensions

(a) Bond lengths (\AA) with e.s.d.'s in parentheses			
F(1)-C(14)	1.316 (6)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.366 (6)
F(2)-C(14)	1.305 (5)	$\mathrm{C}(7)-\mathrm{C}(12)$	1.402 (5)
$\mathrm{F}(3)-\mathrm{C}(14)$	1.320 (5)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.375 (6)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.361 (5)	$\mathrm{C}(8)-\mathrm{C}(14)$	1.504 (6)
$\mathrm{N}(1)-\mathrm{C}(3)$	1.367 (5)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.370 (6)
$\mathrm{N}(1)-\mathrm{C}(11)$	1.425 (5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.395 (6)
$\mathrm{N}(2)-\mathrm{N}(3)$	1.392 (6)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.401 (5)
$\mathrm{N}(2)-\mathrm{C}(1)$	1.303 (6)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.381 (5)
$\mathrm{N}(3)-\mathrm{C}(3)$	1.303 (5)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.396 (5)
N(5)-C(4)	1.470 (6)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.380 (6)
$\mathrm{N}(5)-\mathrm{C}(6)$	1.275 (5)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.380 (7)
$\mathrm{C}(1)-\mathrm{C}(13)$	1.473 (7)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.363 (7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.465 (6)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.369 (6)
$\mathrm{C}(6)-\mathrm{C}(12)$	1.498 (5)	$\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)$	1.484 (5)

(b) Bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	$105.3(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.3(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	$130.5(4)$	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$119.1(3)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(11)$	$124.2(4)$	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.4(3)$
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(1)$	$108.2(4)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.5(4)$
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(3)$	$106.4(4)$	$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(7)$	$119.4(3)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$118.4(4)$	$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(11)$	$123.9(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$109.5(4)$	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$116.6(4)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	$125.6(4)$	$\mathrm{F}(1)-\mathrm{C}(14)-\mathrm{F}(2)$	$107.6(4)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	$124.9(4)$	$\mathrm{F}(1)-\mathrm{C}(14)-\mathrm{F}(3)$	$104.6(4)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{N}(3)$	$110.5(4)$	$\mathrm{F}(2)-\mathrm{C}(14)-\mathrm{F}(3)$	$105.6(4)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.9(4)$	$\mathrm{F}(1)-\mathrm{C}(14)-\mathrm{C}(8)$	$112.1(4)$
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	$129.5(5)$	$\mathrm{F}(2)-\mathrm{C}(14)-\mathrm{C}(8)$	$112.8(4)$
$\mathrm{N}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$109.4(4)$	$\mathrm{F}(3)-\mathrm{C}(14)-\mathrm{C}(8)$	$113.5(4)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(12)$	$124.7(3)$	$\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$122.0(4)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)$	$117.9(3)$	$\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$119.5(4)$
$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)$	$117.4(3)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$118.4(4)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$121.8(4)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$120.9(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.3(4)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$119.775)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	$121.4(4)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$119.8(5)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	$118.2(4)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$121.0(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.5(4)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$120.2(4)$

(c) Selected torsion angles $\left(^{\circ}\right)$; e.s.d.'s are ca 0.8°

$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-6.7	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(3)$	44.2
$\mathrm{~N}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	-67.0	$\mathrm{~N}(5)-\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	150.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	68.0	$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	-30.1
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(12)$	2.3	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{F}(1)$	115.8
$\mathrm{~N}(5)-\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(11)$	-44.7	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{F}(2)$	-122.6
$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(1)$	0.6	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{F}(3)$	-2.5

Discussion. Final atomic parameters are listed in Table $1 ;$ * bond lengths, bond angles and selected torsion angles are in Table 2. The atomic numbering scheme is illustrated in Fi_{ξ}. 1.

Bond lengths and angles in the triazolo ring are in good agreement with those found in brotizolam (Butcher \& Hamor, 1985). The $\mathrm{N}(1)-\mathrm{C}(3)$ formal single bond is shortened to $1.367(5) \AA$, about half-way between the $\mathrm{C}-\mathrm{N}$ single- and double-bond lengths, and the dispositions of valencies about $\mathrm{N}(1)$ and $\mathrm{C}(3)$ are near planar, torsion angle $\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$ $=-6.7^{\circ}$. The geometry of this bond thus resembles that of a double bond, as has been observed in benzodiazepin-2-ones (Hamor \& Martin, 1983), and is

[^2]indicative of the participation of this bond in the electron delocalization of the triazolo ring. The triazolo ring is planar to within $\pm 0.0025 \AA$.
The seven-membered ring thus contains three 'double' bonds and adopts a cycloheptatriene-like boat conformation, with $\mathrm{C}(3), \mathrm{C}(4)$ and $\mathrm{N}(5)$ forming the bow and $\mathrm{N}(1), \mathrm{C}(11), \mathrm{C}(12)$ and $\mathrm{C}(6)$ forming the stern plane. The bow and stern angles which these planar groupings of atoms make with the central plane of the boat, atoms $\mathrm{N}(1), \mathrm{C}(3), \mathrm{N}(5), \mathrm{C}(6)$, are 55.5 (8) and $36 \cdot 2(8)^{\circ}$, respectively. The values are similar to those found in other triazolobenzodiazepines (Hester, Duchamp \& Chidester, 1971; Kamiya, Wada \& Nishikawa, 1973). The bow angle is, however, slightly smaller than is commonly found in 1,4-benzodiazepin-2-ones (range $58-64^{\circ}$) (Hamor \& Martin, 1983). The deviation parameter (Hamor \& Martin, 1983), which is a measure of the deviation of the seven-membered ring from mirror symmetry and zero torsion angles about

Fig. 1. Stereoscopic view of the molecule in a direction perpendicular to the mean plane through atoms $\mathrm{C}(7)-\mathrm{C}(12)$ drawn with PLUTO (Motherwell \& Clegg, 1978).

Fig. 2. Superposition of drawings of the title compound (full lines) and alprazolam (dashed lines).
the three double bonds of the ideal cycloheptatrienc boat conformation, is 3.2°, typical for this class of compounds.

The angle between the mean planes of the 6 -phenyl ring and the fused benzene ring is $63.5(8)^{\circ}$, well within the range $54-75^{\circ}$ observed in other benzodiazepines containing unsubstituted phenyl rings. The corresponding angle in alprazolam is 69°. The close geometrical similarity between alprazolam and the title compound is illustrated in Fig. 2. The $\mathrm{C}(6)-\mathrm{C}\left(\mathrm{l}^{\prime}\right)$ bond length, $1.484(5) \AA$, corresponds to that of a single bond between $s p^{2}$-hybridized carbon atoms, and the $C(6)-N(5)$ bond length, $1 \cdot 275$ (5) \AA, to that of a $C=N$ double bond.

The complete water molecule is involved in two hydrogen bonds to the benzodiazepine. One is to $\mathrm{N}(3)$ of the symmetry-related molecule at $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$ and the other is to $N(2)$ of the molecule at $-\frac{1}{2}+x$, $\frac{1}{2}-y,-\frac{1}{2}+z$. Distances and angles involved are $\mathrm{O}(1) \cdots \mathrm{N}(3)=3.081(7), \mathrm{H}(\mathrm{O} 1 A) \cdots \mathrm{N}(3)=2 \cdot 12(6) \AA$, $\mathrm{O}(1)-\mathrm{H}(\mathrm{Ol} A) \cdots \mathrm{N}(3)=143(2)^{\circ}$ and $\mathrm{O}(1) \cdots \mathrm{N}(2)=$ $2.997(7), \mathrm{H}(\mathrm{O} 1 B) \cdots \mathrm{N}(2)=2.20(6) \AA$, with angle at $\mathrm{H}(\mathrm{O} \mid B)=155(2)^{\circ}$. There are also two possible hydrogen bonds involving the disordered water molecule, $\mathrm{O}(2) \cdots \mathrm{O}(1)=2.55(2) \AA$ and $\mathrm{O}(2) \cdots \mathrm{N}(3)=$ $3 \cdot 10$ (2) \AA. Other intermolecular contacts correspond to van der Waals interactions.

We thank the Upjohn Company for materials, Dr D. J. Duchamp for structural parameters, Dr I. L. Martin for affinity measurements and the SERC for financial support (to HJK).

References

Butcher, H. J. \& Hamor, T. A. (1985). Acta Cryst. C41, 265-266.
hamor, T. A. \& Martin, I. L. (1983). Progress in Medicinal Chemistry, Vol. 20, edited by G. P. Ellis \& G. B. West, pp. 157-223. Amsterdam: Elsevier.
Hester, J. B. Jr, Duchamp, D. J. \& Chidester, C. G. (1971). Tetrahedron Lett. pp. 1609-1612.
Hester, J. B. Jr, Rudzik, A. D. \& Kamdar, B. V. (1971). J. Med. Chem. 14, 1078-1081.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kamiya, K., Wada, Y. \& Nishikawa, M. (1973). Chem. Pharm. Bull. 21, 1520-1529.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1978). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.

[^1]: \dagger 8-Chloro-1-methyl-6-phenyl-4 H -s-triazolo $[4,3-a][1,4]-$
 benzodiazepine. Marketed as Xanax (Upjohn).
 \ddagger 8-Chloro-6-(2-chlorophenyl)-1-methyl-4 H -s-triazolo[4,3-a]-
 [1,4]benzodiazepine. Marketed as Halcion (Upjohn).

[^2]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51143 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

